
Procceedings of the 3rd International Workshop on
Protocols for Multimedia Systems (PROMS'96)
October 1996, Madrid

Using Java for Multimedia Collaborative
Applications

H. Abdel-Wahab, B. Kvande and S. Nanjangud

<wahab,kvande,nanja s@cs.odu.edu>

Department of Computer Science

Old Dominion University

Norfolk, Va 23529

O. Kim and J.P. Favreau

<kim,favreau@snad.ncsl.nist.gov >

Multimedia & Digital Video Technologies Group

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, Md 20899

Abstract

Java is developed at SUN Microsystems with major designed goals of be-
ing platform-independent, and Internet-oriented programming language.
Thus, a program written in Java can be downloaded and run on PCs,
Macs and UNIX workstations without any modi�cations. However, Java
does not have built-in support or mechanisms for developing multi-user
and collaborative applications. The objective of our project is to extend
and demonstrate the suitability of Java as a base for developing mul-
tiuser collaborative applications. We have designed and implemented a
Java package and utilities to aid the applications developer in writing
multiuser Java applications. Our approach is based on replicated tool
architecture in which each participant runs a copy of the application and
the activity of each user is multicasted to each other participant in the
conference. This paper discusses our approach and the technical details
and principles used in extending and enhancing Java to support the in-
creasingly popular Internet multimedia conferencing systems.

H. Abdel-Wahab et. al.

1. Introduction

Almost all existing collaborative systems require the participants in a conference
to use the same window system. For example, XTV [1, 2] and Suite [5] are based
on the X window system and requires that the participant's machines run the X
server. Other systems, e.g., WTV [3] have tried to replicate the functionality of
XTV replacing the X window with Microsoft Windows. Ideally, each participant
in the same collaborative conference should be able to use whatever platform
he/she might have or prefers. For example, some may use PCs running MS
Windows, Windows 95 or Windows NT. Others may use workstations running
di�erent
avors of UNIX and X windows. Yet others may use Macs or PowerPC
Macintoshs. Before the introduction of Java, that task was enormously di�cult
to achieve. Java programs are compiled to an architecture neutral byte-code
format and thus can run on any system that implements a Java virtual machine
and its abstract window system. Java provides a golden opportunity for the
CSCW (Computer Supported Cooperative Work [7]) community to climb a high
barrier that hindered the wide spread use of the collaboration technology and
its applications.

As soon as the beta release of Java was made available, we have decided to ex-
plore the possibility of extending and using Java to build platform-independent
collaborative multimedia systems. Our approach is to let the Java programmers
develop their applications as traditional single-user applications and to use our
provided package to deal in a transparent way with the multi-user and confer-
encing aspects of their applications. The set of libraries and utilities provided in
our package relieves the application programmers from dealing with such low-
level details of dealing with the communications and conferencing aspects of the
applications. For example, they do not have to deal with communications is-
sue (e.g., multicasting the data between the conference participants), conference
management issues (e.g., joining and leaving a session),
oor management issues
(e.g., who is allowed to interact and provide input and control the application
during the session). Instead they concentrate on developing the application as
they normally do in the traditional single-user applications. They only need to
include our package with their code and have to be aware of the fact that the
application is being shared by more than one user.

Section 2 is an overview of the system architecture. Section 3 gives the
details of the collaboration client design. Section 4 shows how events are ex-
changed between replicated copies of shared applications. Section 5 discusses

oor management policy and implementation. In Section 6 we discuss the col-
laboration server design. Finally, Section 7 is our conclusion and future work.

2. System Architecture

Figure 1 shows the overall system architecture. Each participant runs a copy of

Java for Multimedia Collaboration

Application
Code

Application
Interface

Conference Control

Interface

Collaboration
Client

Server

Collaboration

to other participants

Fig. 1. System Architecture

the application. The application is composed of two parts: one part written by
the application programmer and the other part is provided by our collaborative
package. The applications part is composed of the Application Code and the
Application Interface. This code and the interface are designed and written by
the Java application programmers as a traditional single-user application with
few statements to include and invoke our Java collaboration package. The second
part of Figure 1 consists of the Collaboration Client code and the Conference

Control Interface. Thus, each participant has two interfaces; one is application
speci�c (i.e., it may be di�erent for each application) and the other is generic
(i.e., it is the same for all applications) for conference and
oor management.
The application programmer writes the code that generates and manipulates the
�rst interface while our package provides the rest of the code that generates and
manipulates the second interface and takes care of all communications between
participants.

In the center of Figure 1 is the Collaboration Server which has the major
function of distributing the messages among participants and implementing the

oor management policy.

Our architecture is based on the replicated architecture of application shar-
ing [8] where a copy of the shared application runs locally at each site and input
events to each application are distributed to all sites. In Figure 1 the Collab-

oration Client intercepts the input events to the Application Code and send it
to the Collaboration Server for distribution to all participants. In addition, it
receives the events sent by other participants (via the Collaboration Server) and
post it to the Application Code. Most collaborative applications allow only one

H. Abdel-Wahab et. al.

participant at a time to provide input to the application. This is implemented
by having a
oor (or token) and only the
oor-holder can interact with the appli-
cation. The input to the
oor-holder instance of the application is intercepted
and sent to all other instances of the application. The details of intercepting
input and posting it to other instances of the application is the core of our Java
collaboration package and is described next.

3. The Collaboration Client Design

The Collaboration Client (CollClient) replaces all the components of Java GUI
(Graphical User Interface) toolkit package, called java.awt. In our replacement
package called collawt, each java.awt component is replaced with exact looking
equivalents, but the new component intercepts all the user-events in the appli-
cation and sends them to the Collaboration Server. The Collaboration Server
then forwards the events to all other instances of this application, where it is
posted to the corresponding component.

For example, below is the class Button in our collawt showing the overridden
method handleEvent, with the interception shown in bold-face:

package collawt;

public class Button extends java.Button{

public boolean handleEvent(Event evt){

if (CollObject.send(evt))

return super.handleEvent(evt);

return false;

}

}

In this class the default event-handler, the Component.handleEventmethod,
is replaced in every GUI component that produces user events. To override this
method, all the GUI components in collawt are subclassed from their corre-
sponding components in java.awt, as shown in Figure 2.

This �gure shows the collawt package and its relationship to the standard
java window toolkit package java.awt. Every widget inherits from its corre-
sponding widget in java.awt and overrides the handleEvent method. The new
implementation of this method intercepts the events, and then calls the send

method in CollClient before it gives it to the original event-handler. When
CollClient receives an event it is rebuilt and posted to the target component.
In CollClient the object CollEvent is used to
atten and rebuild events that it
sends and receives, respectively, and the object ClientFloorMgr is used for
oor
management.

The �rst task of the CollClient is to establish a network connection with the
Collaboration Server (CollServer). Events and any other messages are sent and
received via this connection. Second, the CollClient is responsible for sending

Java for Multimedia Collaboration

DialogCheckboxCanvasButton

Component

Button Canvas Checkbox Dialog

package
java.awt

collawt
package

CollEvent ClientFloorMgr

send(event) enableFloor()
disableFloor()

CollClient:
receive(event)

Fig. 2. Collawt Package

events to CollServer on behalf of the GUI components and posting the events that
it receives. The posting of received events to the GUI components is completely
transparent to the application and looks like a normal event originating from
the user. The basic overall architecture is depicted in Figure 3 .

The �gure is showing two instances of the same application running at two
di�erent hosts using the collawt package. All GUI user events are intercepted
at host A and sent across the network to the distributor (CollServer), which
forwards the events. The events are received at host B by CollClient, which
posts them to the corresponding target component in the application.

4. Event Dispatching

When the user interacts with a GUI component of the interface of an application,
the component's event-handler, handleEvent is called. This method is overrid-
den in every component and calls the CollClient.send method which sends
the event to the distributor. The structure of the event is
attened to a string
representation before it is sent on the network. The event is received on the
other side by the CollClient.receivemethod a thread waiting in an inde�nite
loop receiving events and other messages for the application. The received event
is reconstructed from the string representation and the correct target component
is located before it is �nally posted. When the event is posted, handleEvent is
called as if this was a normal user-generated event and this method again calls
the CollClient.send method. The received event should not be resent on the

H. Abdel-Wahab et. al.

Host A
Application X

Host B
Application X

(forwards events)
Distributor

gui components gui components

CollClient CollClientCollServer

Fig. 3. Overview of the Collaboration Client Architecture

network, so it is marked as received from the network (FROMNET) before it
is posted by the receive method. The send method checks to see if the event
was received from the network, and if it was, the event is only posted, not sent.
Figures 4 and 5 shows the Java code for the send and receive methods.

4.1 Component Hierarchy

All the GUI components are organized into a component hierarchy where a
component can have several child components, and all components except the
topmost one has exactly one parent.

Figure 6 shows a screen dump of a Java program called Scribble [6] with a
canvas to draw on and three buttons organized in a button panel.

Figures 7 shows the component-hierarchy of the Scribble example. The root
component, frame, is the parent window of the application. The components of
the application are nested where a component, called a parent (ButtonPanel),
contain several child components (ColorButton, ClearButton, QuitButton).

In this example, the events are handled in Scribble's event-handler, so the
events from ColorButton are given to ButtonPanel, which further gives them to
Scribble which handles the events.

The CollClient.sendmethod is called every time handleEvent is called on
the way up the hierarchy. Clearly, the event should only be sent once to the
distributor, so after it is sent the �rst time (from the component that generated
the event), it is marked as already sent, and that it should not be sent again
(DONTSEND). The send method checks whether the event was sent or not.

Java for Multimedia Collaboration

public static boolean send(java.awt.Event evt) {

// if the event came from the network, post it but don't send

if (evt.clickCount >= FROMNET)

return true;

// don't send or post the event if the floor is not yours

if (floor == false)

return false;

// check if the event has already been sent, if it has not, mark

// it as sent, and send it to the distributor

if (evt.clickCount < DONTSEND) {

// to save bandwith we don't send motion events

// without the mouse button being pressed down

if (evt.id != Event.MOUSE_MOVE)

{

String event = CollEvent.toString(parent, evt);

send(DATA, event);

evt.clickCount += DONTSEND;

}

}

return true;

}

Fig. 4. Send Method

H. Abdel-Wahab et. al.

public void receive() {

int length = 0;

// infinite loop waiting for data to be received

while (waitEvent != null) try {

// receive the data in the inbuffer

length = in.read(inbuf);

String data = new String(inbuf, 0, 2, length-2);

switch (inbuf[1]) {

case GIVE_FLOOR:

floorMgr.giveFloor(data);

continue;

case FLOOR:

floorMgr.enableFloor();

continue;

case UPDATE_FLOOR:

floorMgr.floorStatus.setText(data + " has floor");

continue;

}

// This is an event and it is posted to the application.

// A new event is first constructed using CollEvent.

evt = new CollEvent(parent, data);

// mark the event as received from the network, adding

evt.clickCount += FROMNET;

// post the received event to the target component

((Component) evt.target).postEvent(evt);

}

Fig. 5. Receive Method

Java for Multimedia Collaboration

Fig. 6. Screen Dump of Java Scribble Example

CanvasButtonPanel

ColorButton ClearButton QuitButton

Scribble

Frame

Fig. 7. Example of Component Hierarchy

H. Abdel-Wahab et. al.

Table 1 The attributes of Java Event

Attribute Description

id The type of the event
x The x coordinate of the event
y The y coordinate of the event
key The key that was pressed in a keyboard event
clickCount The number of mouse clicks (single-click, double-click, etc)
modi�ers The state of the modi�er keys

when The time stamp
evt The next event
arg An argument to the target component
target The target component of the event

4.2 Flattening and Reconstructing Events

As mentioned before, the event has to be converted to a representation suitable
to be sent over the network. Further, this representation has to contain su�cient
information for the event to be easily reconstructed and posted to the correct
target component. The attributes of a Java Event object are shown in Table 1.

With bandwidth restrictions in mind we tried to minimize the information
in our event representation as much as possible without sacri�cing to much
information. At present, we did not incorporate the evt and when �elds in our
representation, because we felt there was really little use for this information
at this time. In our string representation every �eld got their own designated

position separated by commas. In this way the event is fairly easy to parse and
rebuild upon reception.

Further, a GUI component in Java has no identity and, therefore, a unique ID
(called targetID) is assigned to each component in the following way: At startup
the component-tree of the application (as shown in Figure 7) is traversed and
the pointer to each component is put into a vector. The indices of this vector
are used as the target IDs. Figure 8 shows the method used to bulid that vector.
In this method, we rely on the Java's awt countComponents and getComponent

methods to traverse the tree and construct the corresponding vector.
Each event is
attened by concatenating the string-representation of the each

�eld and send the resulting string in a packet as shown bellow:

id j x j y j key j clickCount j modi�ers j arg j targetID

When the packet is received, a new \empty" event is constructed from parsing
the string contained in the packet. The last element in the string (targetID) is
used to identify the target component for which the constructed event is posted.

Java for Multimedia Collaboration

private static void build_component_tree(Container root, Vector cVector) {

// count the components in the container

int components = root.countComponents();

for (int i = 0; i < components; i++) {

// get each component of the container

Component c = root.getComponent(i);

// if this is a container, get its components

if (c instanceof Container) {

// recursive call to the function again

build_component_tree((Container) c, cVector);

}

// add the component to the component vector

cVector.addElement(c);

}

}

Fig. 8. Building Index Vector from Component Tree

5. Floor Management

Only one user can have control of the application at any time. This is accom-
plished by a token called
oor. Whoever currently has the
oor can control the
application, and his or her actions are distributed to the other users.

The current implementation of the
oor management is very simple. The

user who needs it simply asks for it, and the user who currently has it, loses it.
Attached to each application is a
oor management interface shown in Fig-

ure 9. This interface has buttons to request the
oor and release the
oor, as
well as a text�eld displaying the status of the
oor. This status can be one of
the following: you have the
oor, the distributor has the
oor, another user has
the
oor, which is stated by that user's name.

In this section we discuss the client-side of
oor management protocol and in
Section 6 the server-side of the protocol will be discussed. Table 2 lists the type
of packets exchanged between the clients and the server; four of these packets are
related to
oor management. The enforcement of the
oor is accomplished by a

ag in CollClient named
oor. When the user has the
oor, this
ag is enabled
and all the events are sent and posted to the application. If the user does not
have the
oor, this
ag is disabled, and none of the events are sent or posted
to the application. The application is in reality \dead", nothing happens when
the user interacts with it. This is done so that all instances of the application
are in the same state at any given time. The ClientFloorMgr code has �ve basic
methods:

H. Abdel-Wahab et. al.

Fig. 9. Screen Dump of Floor Management Interface

1. The requestFloor method is called whenever the request
oor button is
pushed, and a REQUEST FLOOR packet is sent to the distributor asking
for the
oor.

2. The enableFloormethod is called when a FLOOR packet is received from
the distributor, and the
oor-
ag in CollClient is enabled.

3. The releaseFloor method is called whenever the release
oor button is
pushed. A RELEASE FLOOR packet is sent to the distributor giving it
the
oor, and the CollClient
oor
ag is disabled. This method is only
called if the user has the
oor.

4. The giveFloor method is called whenever a GIVE FLOOR packet is re-
ceived from the distributor, the
oor is disabled and the status �eld is
updated to re
ect the new
oor holder.

5. The method updateFloorStatus is called whenever an UPDATE FLOOR
packet is received from the distributor, stating that the
oor ownership
changed. The
oor status �eld is then updated to re
ect the new user
having the
oor.

6. The Collaboration Server

The Collaboration server has three basic tasks: Group Management, Data Dis-
tributor and the Floor Management. All information exchanged between a Collb-
orataion Client and the Collaboration Server is sent in the form of packets. Table
2 shows the di�erent packet types.

Java for Multimedia Collaboration

Table 2: Packet Types

Type Description

JOIN This application is joining the group
LEAVE This application is leaving the group

DATA The packet contains data which has to be distributed

REQFLOOR This is a request for
oor
RELFLOOR The instance wants to release
oor
TAKEFLOOR Floor has been granted to this instance
GIVEFLOOR Floor has been revoked for this instance

When a packet is received from an application instance, based on the type
�eld, various actions are taken as described below:

� Group Management: If the type �eld is a JOIN, then the user is added
to the group and all other instances are informed about the new user. Sim-
ilarly, if the action is a LEAVE, then this particular instance is removed
from the list of instances and all other instances are informed.

� Data DistributionThe functions of the Data Distribution of the server
is to distribute a DATA packet received from one instance of the applica-
tion to all other participating instances.

� Server Floor ManagementA user can interact with his instance of the
application only if he has the
oor. The following are the steps taken by
the Server Floor manager to determine who has/gets the
oor next:

1. When the server comes up initially, it sets a
ag
oorIsMine to true.

2. When a REQFLOOR packet is received from a user the server checks
to see if it has the
oor. If it does not have the
oor it sends a
GIVEFLOOR packet to the user currently having the
oor and waits
until RELFLOOR comes back from that user.

3. Send a TAKEFLOOR packet to the user who requested the
oor
The
oor management maps are updated to re
ect the new owner of
the
oor and the
oorIsMine
ag is set to false.

4. If a user voluntarily releases the
oor, then a RELFLOOR packet is
sent to the server, which sets the
oorIsMine
ag to true.

7. Conclusions and Future Work

In this paper we have described the basic concepts and many technical details
of a system that, in e�ect, converts a traditional single-user Java application
into a collaborative multi-user application. There are only a few lines of code
to be added in the source code of the application in order to invoke and use our
system. Currently, we are looking for ways to share existing or new single-user
Java applications without having to access or modify the source code of the
applications, similar to what XTV does to share X windows applications [1].

H. Abdel-Wahab et. al.

In our current system, the action of pushing a button in one copy of an appli-
cation is not displayed in the other remote copies, only the result of the button
being pushed. This is because a Java button-component only takes button-
pushed events, no button-down or button-up events. This will eventually be
�xed in future releases of Java. Resizing of windows is not yet implemented. If
one user resizes his or her window the other user's windows will not be resized.
The Collaboration Server now uses TCP connections for distributing messages
among participants. We are planning to replace these with reliable multicasting
(e.g., the Reliable Multicasting Protocol [9]).

We will continue enhancing and expanding our system to help the developers
of collaborative multimedia applications overcome the heterogeneity problem in
both operating systems and window systems.

References

[1] Abdel-Wahab, H., Feit, M. \XTV: A Framework for Sharing X Win-
dow Clients in Remote Synchronous Collaboration", Proceedings, IEEE

TriComm '91: Communications for Distributed Applications & Systems,
Chapel Hill, North Carolina, pp. 159-167, April 1991.

[2] Abdel-Wahab, H., Je�ay, K. \Issues, Problems and Solutions in Sharing
X Clients on Multiple Displays", Journal of Internetworking Research &

Experience. pp. 1-15, Vol. 5, No. 1, March 1994.

[3] Adams, D., \WTV: An MS Windows based Collaborative System", Mas-
ter's Project Report, Department of Computer Science, Old Dominion Uni-
versity, Dec. 1995.

[4] Chung, G., Je�ay, K., Abdel-Wahab, H., \Accommodating Latecomers in
Shared Window Systems", IEEE Computers, pp. 72-74, Vol. 26, No. 1,
January 1993.

[5] Dewan, P., and Chouldhary, R., \A high-level and
exible framework for
implementingmultiuser interfaces", ACM Transaction on Information Sys-

tems, Vol. 10, No. 4, 345-380, (October 1993).

[6] Flanagan, D., Java in a Nutshell, O'Reilly & Associates, 1996.

[7] Grudin, J., \Computer-Supported Cooperative Work: History and Focus",
IEEE Computer, Vol. 27, No. 5, 19-26, (May 1994).

[8] Steinmetz, R., Nahrstedt, K., Multimedia: Computing, Communications &

Applications Prentice-Hall, 1995.

[9] Whetten, B., Montgomery, T., Kaplan, S., \A High Performance Totally
Ordered Multicast Protocol", Theory and Practice in Distributed Systems,
Springer Verlag LCNS 938, 1994.

